Filamentous Phage as a Platform for Development of Contraceptive Vaccines for Animals

Phage vectors

Phage particle can be genetically modified to carry antigenic peptides

Copyright © Auburn University 2012
All rights reserved

Phage vectors
Phage vectors

- Wild type gene 8
- Recombinant gene 8
- Wild type protein
- Recombinant protein + WT protein + antigenic peptide

Why use landscape phage

Effective immunogen
- Structure of Ag surface display
- Highly organized, repetitive, high density
- Particulate antigen, size and shape attractive for APCs
- Stimulate strong T helper cell responses
- Low cost to produce
- 1L of ON culture yields ~10 mg phage, 50-100 doses stable to transport, store and deliver
- Years if refrigerated
- Six months at room temperature
- Weeks at 63°C
- Hours at 76°C
- Easily administered via parenteral routes, no adverse reactions
- Tested in mice, dogs, pigs
- Viable pathway to regulatory approval
- Can be used in inactivated form
- Retains immunogenicity (Samoylova et al., Virological Methods, 2012)

Phage viability

Phage absorbance profiles

Antibody responses in mice

Sequential bleedings, weeks after primary immunization
Phage-GnRH constructs can be generated via:

1. Cloning of GnRH inserts in phage vector
2. Selection of GnRH-like clones from phage display libraries

Peptide of interest: GnRH

Phage-GnRH construct

GnRH-like peptide
4000 copies per phage particle

Design of phage-GnRH constructs

- Known receptor binding epitopes
- Studies on a.a. critical for contraception
- Arl/A/AAAAA
 - Testosterone - immunocastration
 - In mice (Hu et al., 2007)
- Short peptide GLRPG
 - Fertility trials
 - In dogs (Hu et al., 2004)
 - XXXXXX
 - In cats

Cloning of phage-GnRH constructs

- Design insert sequences
- Synthesize oligonucleotides
- Prepare dsDNA inserts; prepare phage vector DNA
- Cut insert & phage DNAs with restriction enzymes
- Ligate insert in phage DNA
- Electroporate obtained constructs in E. coli
- Sequence phage-harbor E. coli colonies
- Propagate correct phage clone
Phage-GnRH constructs obtained via cloning: example

<table>
<thead>
<tr>
<th>Insert sequence</th>
<th>Titer, cfu/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRGGGS</td>
<td>4x10¹⁵</td>
</tr>
<tr>
<td>ENWVYGL</td>
<td>low</td>
</tr>
<tr>
<td>GGGYNVGGGS</td>
<td>1.4x10¹²</td>
</tr>
<tr>
<td>GGGPQGGGS</td>
<td>1.2x10¹¹</td>
</tr>
<tr>
<td>ENVGRPGGS</td>
<td>low</td>
</tr>
<tr>
<td>ENVGGGVRPG</td>
<td>low</td>
</tr>
</tbody>
</table>

Constructs obtained = 61
Constructs that propagate relatively well = 10
Constructs that propagate well and show good binding to GnRH Ab - several Stable?

Phage display library is multibillion mixture of phage clones

Phage display library is a multibillion mixture of phage clones.

How phage display works...

Selection from phage library

- Add phage library
- Incubate
- Wash
- Recover bound phage
- Propagate
- Add to GnRH Ab for next round
- Purify
- Selection

Ab = anti-GnRH antibodies
3-4 rounds required
Monitoring of selection steps

<table>
<thead>
<tr>
<th>Round 1</th>
<th>Round 2</th>
<th>Round 3</th>
<th>Round 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagate/purify phage pool</td>
<td>Comparative ELISA with anti-GnRH Abs</td>
<td>Identify round with highest ELISA response</td>
<td>Propagate phage from random individual colonies</td>
</tr>
<tr>
<td>ELISA of individual phage clones</td>
<td>Sequence clones with highest ELISA responses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8-mer library selection: example

Round-to-round enrichment in GnRH Ab-binding clones (ELISA)

Phage libraries selection using different Abs

- 8-mer on Ab 16216
- 9-mer on Ab 16216
- 8-mer on cat Ab Protein A purified
- 8-mer on cat Ab GnRH pep purified

<table>
<thead>
<tr>
<th>8-mer on Ab 16216</th>
<th>9-mer on Ab 16216</th>
<th>8-mer on cat Ab Protein A purified</th>
<th>8-mer on cat Ab GnRH pep purified</th>
</tr>
</thead>
<tbody>
<tr>
<td>XGLRPXXX</td>
<td>ALRPGLDES</td>
<td>DQQGNNXXX</td>
<td>DGLRPQAP</td>
</tr>
<tr>
<td>GPTPXXX</td>
<td>XIXPGXXX</td>
<td>GANRXXX</td>
<td>EHFTGNG</td>
</tr>
<tr>
<td>XIXPXXX</td>
<td>AIXXXXXX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTPVXXX</td>
<td>GTPIXXX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Candidate clones for in vivo studies: ELISA signals

Green: GnRH epitope C terminus
Red: GnRH epitope N terminus
Others colors: GnRH mimics or non-GnRH epitopes
Black: any amino acid residue

Phage clones

- 1: DGLRPQAP
- 2: EHFTGNG
- 3: EKLAVSQG
- 4: ALRPGLDES
- 5: DPTFPTWTS
- 6: GLLPQGS

Phages clones

- Ab 16216
- Cat 1 serum
- Cat 2 serum
Phage-peptide conjugates

Phage: wild type
Peptide: EHWSYGLRPG[Ahx]-COOH
- [Ahx] 6-aminohexanoic acid derivative of lysine

Conjugation: EDC 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide
- activates carboxyl groups for coupling to primary amines
- yields amide bonds

ELISA signals

- Pep 1: EHWSYGLRPG[Ahx]-COOH
- Pep 2: EHWSYKLPG[Ahx]-COOH
- Pep 3: reverse GPRLGYSWHE[Ahx]-COOH
- Pep 4: EHWSYGLPG-amide

Antibody responses in mice

- Pre-immunization
- Post-immunization

ELISA responses to cat & dog sera

- cat sera
- dog sera
Another target – ZP on oocytes

- ZP: zona pellucida
- Protective membrane surrounding oocyte
- 3 or 4 glycoproteins depending on the species
- Play critical role in sperm-oocyte binding and induction of acrosome reaction

ZP-binding epitopes on sperm and on phage

Incubation: phage-ZP binding
Fertilization: sperm-ZP binding

Hypothesis: phage epitopes mimic sperm epitopes

Potential contraceptive mechanisms

Inject ZP-binding phage
Anti-sperm antibodies

Mechanisms of action:
- Inhibition of sperm capacitation, acrosome reaction
- Decreasing sperm motility
- Interference with sperm-ZP interaction/penetration/fusion

Antibody responses in dogs

Sperm cells reacted with serum from immunized dog

- Anti-sperm antibodies
- High, long-lasting Ab responses
- Phage is safe (7 dogs, dose 500µg)
Fertility trials in mice

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Pups/mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>13.50</td>
</tr>
<tr>
<td>Phage vector</td>
<td>13.25</td>
</tr>
<tr>
<td>Phage clone 3.1</td>
<td>11.33</td>
</tr>
<tr>
<td>Phage clone 2.26</td>
<td>9.89</td>
</tr>
<tr>
<td>Phage clone 3.7</td>
<td>7.89</td>
</tr>
</tbody>
</table>

p<0.001
p=0.029

Thank you!!!

Scott-Ritchey Research Center
AUCVM
Nancy Cox
Anna Cochran
Alexandre Samoylov
Nancy Morrison
India Napier
Henry Baker
Adam Breitenieker
Anita Patel
Mandy Norris

Oregon State University
Michelle Kutzler
Caitlin Donovan

Thank you!!!

Department of Pathobiology
AUCVM
Valery Petrenko
Department of Lab animal Health
Bettina Schmera
Department of Anatomy, Physiology, & Pharmacology, AUCVM
Karen Wolfe

ACC&D 5th International Symposium
on Non-Surgical Contraceptive Methods
of Pet Population Control