A SINGLE SUBCUTANEOUS DOSE OF KU-AS-272 ELICITS COMPLETE LOSS OF SPERMATOGONIC SUPPORT IN ADULT MALE RATS

Joseph S. Tash1,2, Vijayalaxmi Gupta1,2, Katherine F. Roby3,4, Brian Kern1,2, Todd Hall1,2, Melinda Broward7, Robyn Wood7, Scott Weir7, Michael Baltezor7, Colleen Flynn7, Sudhakar Jakkaraj1,5,6, Ramappa Chakrasali1,5,6, Gunda I. Georg1,5,6

1Interdisciplinary Center for Male Contraceptive Research & Drug Development, 2Dept. of Molecular & Integrative Physiology, 3Inst. for Reproductive Health and Regenerative Medicine, 4Dept. Anatomy & Cell Biology, Univ. Kansas Medical Center, 5Dept. Medicinal Chemistry, and Inst. for Therapeutics Discovery & Development, Univ. Minnesota, 6Dept. Medicinal Chemistry, Univ. of Kansas (KU), 7Inst. for Advancing Medical Innovation, KU, 7KU Biotechnology Innovation and Optimization Center.

We are developing KU-AS-272 as a single dose injectable small molecule pet sterilant that has potent anti-spermatogenic activity. Previous studies showed that a single 6mg/kg dose maintained sterility 6 months later in 40% of adult male rats. We have now completed a single subcutaneous (SQ) dose escalation study at 6, 12, 25 and 50 mg/kg KU-AS-272 in 70 day old male rats, and examined testis and epididymis histopathology 5, 30 and 58 days post-dose. Testis and epididymal weights were significantly lower (P≤0.05) at all doses beginning after 5 days and remained so for the entire post-dose period, which is a complete spermatogenic cycle. All doses above 6 mg/kg produced complete loss of all spermatogenic cells from day 5 post dose, which remained so for the entire post-dose monitoring period. At the 6 mg/kg dose, only 2% of the tubules contained any spermatogenic cells. Progressive testicular calcification and loss of Sertoli cells reaching 40% and 60% of calcified tubules by day 58 were seen with 25 and 50 mg/kg, respectively; and pyknotic nuclei were beginning to show in the interstitial space with the high doses. Circulating inhibin B, which is a marker for testis health, was reduced to undetectable levels in all doses above 6 mg/kg for the entire monitoring period, and significantly lower at 6 mg/kg. Testosterone (T) levels were not significantly reduced at day 58 at any of the doses relative to controls. Preliminary safety analysis showed that 6 and 12 mg/kg KU-AS-272 had no noticeable side effects, and the 25 and 50 mg/kg doses produced dose-related transient lethargy, and mild and transient diarrhea. All animals at 25 and 50 mg/kg doses recovered to normal within 1 and 2 days post dose, respectively. The two higher doses were associated with a transient 0.6% and 4.2% decline in body weight 2 days after dosing that was restored to normal weight gain compared to controls by day 5 post-dose. No other side-effects were observed in any animal or any dose for the remainder of the study. Pharmacokinetic (PK) analysis showed the KU-AS-272 has a desirable drug profile following either single oral, subcutaneous or intramuscular route with high bioavailability, rapid absorption, and a long elimination half-life. Analysis of testis levels of KU-AS-272 indicate significant levels of the compound 4 days after dosing, long after KU-AS-272 was eliminated from the circulation. The findings in rat suggest that KU-AS-272 has high promise as a single dose sterilizing agent. A proof of concept study in adult male dogs is currently under way. (Supported by NIH and KU Institute for Advancing Medical Innovation).